<code id='D6D45D391F'></code><style id='D6D45D391F'></style>
    • <acronym id='D6D45D391F'></acronym>
      <center id='D6D45D391F'><center id='D6D45D391F'><tfoot id='D6D45D391F'></tfoot></center><abbr id='D6D45D391F'><dir id='D6D45D391F'><tfoot id='D6D45D391F'></tfoot><noframes id='D6D45D391F'>

    • <optgroup id='D6D45D391F'><strike id='D6D45D391F'><sup id='D6D45D391F'></sup></strike><code id='D6D45D391F'></code></optgroup>
        1. <b id='D6D45D391F'><label id='D6D45D391F'><select id='D6D45D391F'><dt id='D6D45D391F'><span id='D6D45D391F'></span></dt></select></label></b><u id='D6D45D391F'></u>
          <i id='D6D45D391F'><strike id='D6D45D391F'><tt id='D6D45D391F'><pre id='D6D45D391F'></pre></tt></strike></i>

          纳米流制备叶微射定性黄素乳液高压及稳研究一

          综合 2025-05-14 16:22:19 28

          叶黄素(lutein)属于类胡萝卜素色素之一,高压广泛存在于蔬菜、微射花卉、流制水果等植物中。备叶研究发现,黄素叶黄素具有抗氧化、纳米保护视力等功能作用,乳液但叶黄素属于脂溶性色素,及稳不溶于水,定性易氧化,研究因此在食品工业中的高压应用受到了很大的限制。纳米乳液是微射一种液相以液滴形式分散于第二相的胶体分散体系,具有抗沉降和乳析的流制动力学稳定特性,将叶黄素制备为纳米乳液,备叶可增加其水溶解性和防止氧化;高压微射流是黄素采用100MPa以上的压力对乳液进行乳化均质的一种手段,近年来,在姜黄素、紫苏油等纳米乳液的制备上得到应用,但采用高压微射流制备叶黄素纳米乳液,目前还少见报道。因此,本文以叶黄素为主要原料,通过添加卵磷脂,采用高压微射流制备叶黄素纳米乳液,通过正交试验探讨压力、叶黄素用量、卵磷脂用量对纳米乳平均粒径的影响,为制备叶黄素油纳米乳液提供理论指导。

          1材料和方法

          1.1材料

          1.1.1原料和试剂

          叶黄素,分析纯,郑州正用化学试剂有限公司;大豆卵磷脂,分析纯,上海国药集团。

          1.1.2仪器与设备

          XHF-D高速分散机,宁波新芝生生物科技股份有限公司;Bench-top高压纳米均质机,英国SFP公司制造;HC-3618R高速冷冻离心机,安徽中科中佳科学仪器有限公司;纳米粒度和zeta电位及分子量分析仪,英国Malern仪器公司。

          1.2实验方法

          1.2.1叶黄素纳米乳液制备

          在室温条件,将水、叶黄素和大豆卵磷脂混合,采用磁力搅拌器1000r/min下混合均匀,然后采用10000r/min的高速分散机分散,再通过高压纳米均质仪处理2次,即得叶黄素纳米乳液。

          1.2.2叶黄素纳米乳液制备的单因素实验

          以平均粒径为指标,分别研究高压微射流压力(100MPa、120MPa、140MPa、160MPa、180MPa)、叶黄素用量(2%、4%、6%、8%、10%)、大豆卵磷脂用量(1%、2%、3%、4%、5%)对纳米乳液平均粒径的影响。

          1.2.3正交实验优化

          在单因素实验的基础上,以纳米乳液的平均粒径为指标,采用L9(3)4正交实验表进行实验设计。实验的因素与水平见表1。

          因素与水平

          1.2.4叶黄素纳米乳液离心稳定性测定

          取30mL的叶黄素纳米乳液加入到50mL离心管中,加盖密封,室温10000r/min离心不同时间,测定其粒径和Zeta电位。

          1.2.5叶黄素纳米乳液稳定性研究

          取10mL叶黄素纳米乳液避光放在25℃条件下储存15d,每隔3d测定其粒径和Zeta电位。

          1.2.6叶黄素纳米乳液的粒径和Zeta电位分析

          将叶黄素纳米乳液采用激光纳米粒度仪测定粒径和Zeta电位。

          1.2.7数据处理

          数值以“均值±标准偏差”表示,样品之间的差异性通过t检验比较(P<0.05)。

          2结果与分析

          2.1高压微射流压力对叶黄素纳米乳液粒径的影响

          不同高压微射流压力对叶黄素纳米乳液粒径的影响见图1。

          从图1可见,随着压力的增加,纳米乳液粒径减小,但压力达到160MPa后,压力增加后粒径变化差异不显著(P>0.05),高压可将纳米乳液液滴破碎,增加比表面积,但当压力超过160MPa后,表面积增加更多,表面活性剂不足以覆盖颗粒表面,导致表面颗粒之间的聚集作用增加,聚集作用和破碎作用达到平衡。因此,选择适宜的均质压力为160MPa。

          压力对纳米乳液粒径的影响

          2.2叶黄素用量对纳米乳液粒径的影响

          不同叶黄素用量对叶黄素纳米乳液粒径的影响见图2。

          叶黄素用量对纳米乳液粒径的影响

          由图可见,在叶黄素用量达到8%之间,叶黄素用量对纳米乳液粒径的影响不显著(P>0.05),但达到8%后,继续增加用量,粒径增加显著(P<0.05),这是由于叶黄素用量超过8%后,乳化剂不足以覆盖颗粒表面,颗粒发生聚集。因此,选择大豆卵磷脂适宜的用量为8%。

          声明:本文所用图片、文字来源《中文科技》,版权归原作者所有。如涉及作品内容、版权等问题,请与本网联系

          相关链接:叶黄素纳米卵磷脂

          本文地址:http://ac2.impactiveimprints.com/html/64b3699899.html
          版权声明

          本文仅代表作者观点,不代表本站立场。
          本文系作者授权发表,未经许可,不得转载。

          全站热门

          中央气象台继续发布暴雪橙色预警

          第五人格月佑者舞女皮肤效果预览:细节展示与评测

          保卫萝卜 3 第 60 关怎么过?火箭炮塔作用大揭秘

          组合模型第 21 关图文攻略分享:轻松通关技巧

          13条就业创业利好政策!浙江高校毕业生快来关注

          龙神之光电脑版电脑玩龙神之光模拟器下载安装攻略教程

          梦境侦探候车大厅时光水晶位置及第一关分享

          密室逃脱 11 金字塔该怎么过关?详细通关攻略大揭秘

          友情链接

          粤ICP备77645321号